首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   7篇
  国内免费   9篇
  2023年   5篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   10篇
  2018年   6篇
  2017年   8篇
  2016年   9篇
  2015年   8篇
  2014年   16篇
  2013年   12篇
  2012年   8篇
  2011年   9篇
  2010年   9篇
  2009年   15篇
  2008年   8篇
  2007年   27篇
  2006年   8篇
  2005年   4篇
  2004年   14篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1973年   1篇
排序方式: 共有233条查询结果,搜索用时 15 毫秒
101.
102.
Electrical activity recorded from the olfactory bulbs and prepyriform cortex of guinea pigs, rats, and mice under conditions of spontaneous behavior and upon presentation of odor stimuli was analyzed in a comparative aspect. The dynamics of electrographic phenomena observed in rhinencephalic structures and the spectral composition of these phenomena are discussed considering the probability that the high-frequency components of this electrical activity are not directly related to realization of the olfactory function. Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 440–447, September–December, 2006.  相似文献   
103.
104.
Previous work on mammals and birds has often demonstrated a negative relationship between group size and individual vigilance. However, this relationship has received only weak support in nonhuman primates. This result may be due to the failure to distinguish different forms of vigilance such as antipredatory vigilance and social monitoring. Here, we tested the effects of group size, reproductive status (breeding vs. nonbreeding), and sex on antipredatory vigilance and social monitoring in captive common marmosets (Callithrix jacchus). Behavioral observations using one-zero sampling were conducted on adult members of three captive groups of small, medium, and large size. Data were analyzed using a series of general linear models (GLMs) analyses of covariance (ANCOVAs). We found an overall negative group size effect on antipredatory vigilance and that breeders, especially breeding males, were significantly more vigilant than nonbreeders. Conversely, we found that social monitoring increased with group size. Unlike the results for antipredatory vigilance, neither breeders and nonbreeders nor males and females differed in their amounts of social monitoring. However, the effect of group size appeared to differ for nonbreeding males compared to all other adults. Our results generally support the idea that individuals in larger groups are safer with breeding males likely playing a prominent role in protection from predation. The increase in social monitoring may be related to increased reproductive competition with the presence of adult offspring, but future studies need to clarify the target of social monitoring in both breeders and nonbreeders. Overall, the study underlines the importance of distinguishing different forms of vigilance and other factors as they may confound the effects of group size on antipredatory vigilance.  相似文献   
105.
106.
107.
Many animals must trade-off anti-predator vigilance with other behaviours. Some species facilitate predator detection by joining mixed-species foraging parties and ‘eavesdropping’ on the predator warnings given by other taxa. Such use of heterospecific warnings presumably reduces the likelihood of predation, but it is unclear whether it also provides wider benefits, by allowing individuals to reduce their own vigilance. We examine whether the presence of an avian co-forager, the fork-tailed drongo (Dicrurus adsimilis), affects rates of vigilance (including sentinel behaviour) in wild dwarf mongooses (Helogale parvula). We simulate the presence of drongos—using playbacks of their non-alarm vocalizations—to show that dwarf mongooses significantly reduce their rate of vigilance when foraging with this species. This is, to our knowledge, the first study to demonstrate experimentally that a mammal reduces vigilance in the presence of an avian co-forager.  相似文献   
108.
With increasing group size, individuals commonly spend less time standing head-up (scanning) and more time feeding. In small groups, a higher predation risk is likely to increase stress, which will be reflected by behavioural and endocrine responses. However, without any predator cues, we ask how the predation risk is actually processed by animals as group size decreases. We hypothesize that group size on its own acts as a stressor. We studied undisturbed groups of sheep under controlled pasture conditions, and measured in situ the cortisol and vigilance responses of identified individuals in groups ranging from 2 to 100 sheep. Both vigilance and average cortisol concentration decreased as group size increased. However, the cortisol response varied markedly among individuals in small groups, resulting in a lack of correlation between cortisol and vigilance responses. Further experiments are required to explore the mechanisms that underlie both the decay and the convergence of individual stress in larger groups, and whether these mechanisms promote adaptive anti-predator responses.  相似文献   
109.
110.
I examined the role of vision in social foraging by contrasting group size, vigilance, spacing, aggression and habitat use between day and night in many species of birds and mammals. The literature review revealed that the rate of predation/disturbance was often reduced at night while food was considered more available. Social foraging at night was prevalent in many species suggesting that low light levels at night are not sufficient to prevent the formation and cohesion of animal groups. Group sizes were similar or larger at night than during the day in more than half the bird populations and in the majority of mammal populations. Factors such as calls, feeding noises or smells may contribute to the formation and cohesion of groups at night. Larger numbers of foragers at night may also facilitate the aggregation of more foragers. Vigilance levels were usually lower at night perhaps as a response to the lower predation risk or to the decreased value of scanning for predators that are difficult to locate. Low light levels may also make visual cues that promote aggression less conspicuous, which may be a factor in the lower levels of aggression documented at night. Spacing varied as a function of time of day in response to changes in foraging mode or food availability. Habitats that are avoided during the day were often used at night. Foraging at night presents birds and mammals with a new set of constraints that influence group size, time budgeting and habitat use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号